Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

±³ÇÕ·ÂÀÌ Ä¡°æºÎ º¹ÇÕ·¹Áø ¼öº¹¹°ÀÇ ÀÀ·ÂºÐÆ÷¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ °üÇÑ 3Â÷¿ø À¯ÇÑ¿ä¼Ò¹ýÀû ¿¬±¸

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study

´ëÇÑÄ¡°úº¸Á¸ÇÐȸÁö 2008³â 33±Ç 3È£ p.246 ~ 257
¹ÚÂù¼®, Ç㺹, ±èÇöö, ±è±¤ÈÆ, ¼Õ±Ç, ¹ÚÁ¤±æ,
¼Ò¼Ó »ó¼¼Á¤º¸
¹ÚÂù¼® ( Park Chan-Seok ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úº¸Á¸Çб³½Ç
Ç㺹 ( Hur Bock ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úº¸Á¸Çб³½Ç
±èÇöö ( Kim Hyeon-Cheol ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úº¸Á¸Çб³½Ç
±è±¤ÈÆ ( Kim Kwang-Hoon ) - ºÎ»ê´ëÇб³ °ø°ú´ëÇÐ ±â°è¼³°è°øÇаú
¼Õ±Ç ( Son Kwon ) - ºÎ»ê´ëÇб³ °ø°ú´ëÇÐ ±â°è¼³°è°øÇаú
¹ÚÁ¤±æ ( Park Jeong-Kil ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úº¸Á¸Çб³½Ç

Abstract

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº 3Â÷¿ø À¯ÇÑ¿ä¼ÒºÐ¼®¹ýÀ» »ç¿ëÇÏ¿© ±³ÇÕ·ÂÀÇ À§Ä¡¿Í ¹æÇâÀÌ »ó¾Ç Á¦2¼Ò±¸Ä¡ÀÇ Ä¡°æºÎ º¹ÇÕ·¹Áø ¼öº¹¹°ÀÇ ÀÀ·ÂºÐÆ÷¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇØ Æò°¡ÇØ º¸°íÀÚ ÇÏ¿´´Ù. ¹ßÄ¡µÈ »ó¾Ç Á¦2¼Ò±¸Ä¡¸¦ ÀÌ¿ëÇÏ¿© micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium)·Î ½ºÄµÇÑ ÈÄ HyperMesh Ver 6.0 (Altair Engineering, Inc., Troy, USA)¿Í 3D-DOCTOR (Able Software Co., Lexington, MA, USA)·Î 3Â÷¿ø À¯ÇÑ¿ä¼Ò ¸ðÇüÀ» Á¦ÀÛÇÏ¿´´Ù. Á¦ÀÛµÈ ¼Ò±¸Ä¡ ¸ðÇü¿¡ ½û±âÇü ¿Íµ¿À» Çü¼ºÇÏ°í ź¼º°è¼ö°¡ ¼­·Î ´Ù¸¥ È¥ÇÕÇü º¹ÇÕ·¹Áø°ú È帧¼º º¹ÇÕ·¹ÁøÀ¸·Î °¢°¢ ¼öº¹ÇÏ¿´´Ù. ¼öº¹ ÈÄ ¼³Ãø±³µÎÀÇ ÇùÃø»ç¸é ¼¼ À§Ä¡¿¡ °¢°¢ ¼öÁ÷, 20µµ, 40µµÀÇ °¢µµ·Î ÇÏÁßÀ» °¡ÇÑ ÈÄ ÀÀ·ÂºÐÆ÷¸¦ ANSYS Ver. 9.0 (Swanson Analysis Systems. Inc., Houston, USA) ÇÁ·Î±×·¥À» ÀÌ¿ëÇÏ¿© ÀÎÀå ÀÀ·ÂÀÇ ºÐÆ÷¸¦ ºÐ¼®ÇÑ ¹Ù ÇÏÁß À§Ä¡¿Í °ü°è¾øÀÌ ÇÏÁß¹æÇâÀÇ °¢µµ°¡ Áõ°¡ÇÒ¼ö·Ï, ¶ÇÇÑ ¼öº¹Àç·áÀÇ Åº¼º°è¼ö°¡ ³ôÀ»¼ö·Ï ÀÎÀåÀÀ·Âµµ Áõ°¡ÇÏ´Â °ÍÀ¸·Î º¸¾Æ ±³ÇÕ·ÂÀÇ ¹æÇâ°ú ¼öº¹Àç·áÀÇ Åº¼º°è¼ö°¡ Ä¡°æºÎ ¼öº¹¹°ÀÇ ÀÀ·ÂºÐÆ÷¿¡ Áß¿äÇÑ ¿µÇâÀ» ¹ÌÄ¡´Â ¿ä¼Ò·Î »ç·áµÈ´Ù.

The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering, Inc., Troy, USA) and ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Vivadent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness (). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in increments, from vertical (long axis of the tooth) to oblique direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition, Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.

Å°¿öµå

±³ÇÕ·Â;ÀÀ·ÂºÐÆ÷;Ä¡°æºÎ¼öº¹¹°;ÁÖÀÀ·Â;º¹ÇÕ·¹Áø;À¯ÇÑ¿ä¼ÒºÐ¼®
Occlusal load;Stress distribution;Cervical restoration;Principal stress;Composite resin;Finite element analysis

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI